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Summary

General aim: describe jump modeling in finace through some
relevant issues.

I Lecture 1: Black-Scholes model

I Lecture 2: Models with jumps

I Lecture 3: Optimal stoping for processes with jumps

I Lecture 4: Symmetry and skewness in Lévy markets



Alternatives to Black Scholes (BS)

We begin with two remarks:

I Asset prices do not verify the statistical assumptions of Black
and Scholes model, in particular normal distribution,
skewness, kurtosis, independence.

I Prices of options observed in the market do not give a
consistent value for the volatility in Black and Scholes
formula. This fact is known as the “smile phenomena”.

In conclussion, several atempts have been done in order to obtain
models that incorporate this empirical facts. We distinguish two
directions for the generalization of BS model:



Stochastic volatility models

I they loose the independence of increments for log-stock prices
of BS,

I but they preserve the continuity of paths, that follow an
equation of the type

dSt = St

(
µdt + σtdWt

)
For σt we have two possibilities

I σt = σ(St , t) called local volatility models

I σ2
t follows a SDE itself:

dσ2
t = α(σ2

t )dt + β(σ2
t )dW̄t

where W̄ is another brownian motion (possibly) correlated
with W . This models are popular, and called stochastic
volatility models.



Models with jumps

I They loose the continuity of trajectories, incorporating jumps,

I but they preserve the independence and stationarity of the
increments of the log-prices, through the model

St = S0eXt

where X is a Lévy process, i.e. a stochastic process with
stationary and independent increments.



Definition: Lévy processes

X = (Xt)t≥0 is a Lévy process defined on (Ω,F ,P) when

I X0 = 0, i.e. it starts at the origin.

I X has trajectories with limits from the left and are continuous
from the right (“cadlag”)

I Its increments are independent: if 0 ≤ t1 ≤ · · · ≤ tn, then

Xt1 ,Xt2 − Xt1 , . . . ,Xtn − Xtn−1

are independent random variables.

I It increments are stationary:

Xt − Xs ∼ Xt−s .



Lévy-Kinchine formula

In order to study Lévy process we have an analytical tool of great
relevance, given by the Lévy-Kinchine formula, that states:

E (ezXt ) = etψ(z),

where the cumulant or stochastic exponent ψ is given by the
formula

ψ(z) = bz +
1

2
σ2z2 +

∫
R

(ezy − 1− zy1{|y |<1})Π(dy).

Here

I b and σ ≥ 0 are real numbers,

I Π is called the jump measure, being a postive measure defined
on R− {0}, such that

∫
(1 ∧ y 2)Π(dy) < +∞.



Triplet of LP process

We then have a triplet
(b, σ,Π).

that characterizes the law of the Lévy process (This fact is the
Lévy-Khinchine Theorem).

We conclude that all the probabilistic information of the process is
contained in the triplet, and (it can also be shown) also is
characterized by the cumulant of the process.

Ths makes possible to study probabilistic properties of LP with
analytic mathematical tools, as functions of complex variable



Some analytic computations:

Let us compute the moments of a LP.

E (Xt) = tψ′(0). (1)

In fact, derivating E (ezXt ) = etψ(z) with respect to z , we obtain

E (XtezXt ) = etψ(z)ψ′(z),

that evaluated at z = 0 gives the formula (1).



Similarly, we obtain
E (X 2

t ) = tψ′′(0).

We now write this values in term of the triplet of the process:
Derivating

ψ(z) = bz +
1

2
σ2z2 +

∫
R

(ezy − 1− zy1{|y |<1})Π(dy)

we arrive to

ψ′(z) = b + σ2z +

∫
R

(yezy − y1{|y |<1})Π(dy),

from where we deduce that

E (X1) = ψ′(0) = b +

∫
R

y1{|y |≥1}Π(dy).

Similarly we obtain

E (X 2
1 ) = σ2 +

∫
R

y 2Π(dy).



Lévy markets

We have two assets:

I A savings account
Bt = B0ert

as in BS, and

I A risky asset, of the form

St = S0eXt

where X = (Xt)t≥0 is a Lévy process.



Example: Black Scholes model

The log-price process X is

Xt = σWt + (µ− 1

2
σ2)t,

that is a Lévy process with triplet

(µ− 1

2
σ2, σ, 0).

The absence of jumps can be read in the fact that

Π = 0.



Example: Poisson process

Let T1,T2, . . . be independent random variables with exponential
distribuion and parameter λ. Let

Nt = inf{k : T1 + T2 + . . .Tk ≤ t}.

N = (Nt)t≥0 is a Poisson process with parameter λ.

Xt = bt + cNt

is a Lévy process with triplet (b, 0,Π), where

Π(dy) = λδc(dy).

σ = 0 corresponds to the fact that there is no brownian
component.



Example: Compound Poisson Process

Let us consider T1,T2, . . . as before, and Y = {Yk}k∈N a
sequence of independent random variables with common
distribution F = F (y). We construct

Xt = bt +
Nt∑

k=1

Yk ,

The triplet of this Lévy process is

(b, 0, λF (dy)).

If Y = c (constant), we have F (dy) = δc(dy) and that is the
previous example (the Poisson process).



Example: Diffusion with jumps

Consider as before

I N a Poisson process,

I Y = {Yn}n∈N a sequence of independent random variables
with common distribution F (y)

I W , a brownian motion,

to construct X = (Xt)t≥0 given by

Xt = bt + σWt +
Nt∑

k=1

Yk .

X has triplet
(b, σ, λF (dy))



Example: Merton Jump Diffusion model

In 1976 Merton introduced the first diffusion with jumps model,
assuming that the jump distribution is a gaussian random variable.
We then have that Yk are gaussian. We then have

F (dy) =
1

δ
√

2π
e−(x−ν)2/(2δ2)dy .

The jump measure in this case is λF (dy), and the cumulant is

ψ(z) = bz +
1

2
σ2z2 + λ

(
eνz+δ2z2/2 − 1

)
If λ = 0 we do not have jumps, and obtain the classsical BS model.



Example: Double exponential (Kou) model

Kou model assumes that the jumps have an asymetric double
exponential distribution. More precisely, the common density of
the random varialbes Yk is

f (dy) =

{
pαe−αy , si y > 0,

(1− p)βeβy , si y < 0.

The characteristic exponent in this case is

ψ(z) = bz +
1

2
σ2z2 + λ

(
pz

α− z
− (1− p)z

β + z

)
.



Pricin options in jump models

We have the following equivalences:

I The market is complete

I There exists a perfect hedging

I The risk-netrual measure is unique

I There exists a rational price

But model with jumps are called incomplete and are characterized
by the following facts:

I There is no perfect hedging

I There exists an infinite number of risk-neutral measures

I There exists infinite possible prices, named admissible prices.



A probability measure Q is risk-neutral for the market model if

1. Q is equivalent to P, the historical or physical measure,

2. St/Bt = S0eXt−rt is a Q-martingale.

In order to choose the risk-neutral pricing measure, there are
several different possibilities, we mention some of them:

I In incomplete markets with continuous trajectories (as
stochastic volatility models) Föllmer and Schweizer introduced
the minimal measure, that minimizes the quadratic loss of a
hedge: If π is a self-financing portfolio with capital V π,
corresponding to a payoff f (ST ) this measure minimizes

min
π

E
(

(V π
T − f (ST ))2

)
I In the framework of Lévy processes, Gerber and Shiu proposed

to consider the Esscher transform (coming from Actuarial
mathematics), that minimizes the relative entropy (Chan,
1999).

I A Lévy process is stable under the Esscher transform: if X is a
LP under P, then it is LP under Q, with characteristic
exponent ψQ .



One pricing measure: Esscher Transform

Due to the convexity property of the cumulant, there exists θ such
that

ψP(θ + 1)− ψP(θ) = r

The risk-neutral measure Q given by Esscher transform satisfies

dQ

dP
= exp(θXT − ψP(θ)T ).

The process X under Q has exponent

ψQ(z) = ψP(z + θ)− ψP(θ).

and the martingale condition is

ψQ(1) = r .



Option Pricing

It is easy to compute an expectation when you know the density,
that is not our case.
Here we present Lewis formula (2001), based on Parseval equality
of Fourier transofrms. (See also Carr and Madan, 1999)

The option we price has the following characteristics:

I European type, excercise time T .

I Payoff function f (ST )

I A call option has f (x) = (x − K )+,

I A put option has f (x) = (K − x)+.

I We assume that the pricing measure is Q given by the Esscher
transform (for instance, but this assumption is not necessary
to our computations)



Lewis Formula

The price of an European option with payoff f (ST ) is given by

V (S0,T ) =
e−rT

2π

∫ iν+∞

iν−∞

1

S iz
0

EQ(e−izXT )f̂ (z)dz .

Here

I The domain of integration is the line {z = iν + t, t ∈ R}, in
the complex plane, where ν > 1 is such that the integrals that
appear in our computations converge.

I f̂ is the Fourier transform of the payoff function f :

f̂ (z) =

∫ iν+∞

iν−∞
e izx f (x)dx .

If f (x) = (x − K )+, then f̂ (z) = −K 1+iz/(z2 − iz).



I The formula is obtained applying the Parseval identity (that
holds in Hilbert spaces):∫ ∞

−∞
f (x)p(x)dx =

1

2π

∫ ∞
−∞

f̂ (u)p̂∗(u)du,

(z∗ is the conjugate, valid under certain conditions). We
apply this formula to the density p(u) of ST

p̂∗(u) =

∫ ∞
−∞

e−izup(u)du = (S0)−izEQe−izXT ,

I The numerical computation is performed using the Fast
Fourier transform(FFT) after the following transformations

I Similar arguments give the Carr and Madan (1999) formula.



Application of Lewis formula

Let us consider an european call in the Merton model. We have

I EQ(e−iZXT ) = eTψ(−iz) =

exp
(
−ibz − 1

2σ
2z2 + λ

(
e−iνz−δ2z2/2 − 1

))
I f (x) = (x − K )+ por lo que f̂ (z) = −K 1+iz/(z2 − iz)

We have

V (S0,T ) =
−Ke−rT

2π

∫ iν+∞

iν−∞

(K/S0)iz

z2 − iz

exp

(
−ibz − 1

2
σ2z2 + λ

(
e−iνz−δ2z2/2 − 1

))
dz



Particular case: Black Scholes model

If λ = 0 in Merton model we recover BS model. In this case b = r
due to the martingale condition. The option price is

V (S0,T ) =
−Ke−rT

2π

∫ iν+∞

iν−∞

(S0/K )−iz

z2 − iz
e−irz− 1

2
σ2z2

dz

=
−Ke−rT

2π

∫ iν+∞

iν−∞

e−ikz

z(z − i)
e−irz− 1

2
σ2z2

dz

=
−Ke−rT

2π

∫ iν+∞

iν−∞
e−ikz

(
i

z
− i

z − i

)
e−

1
2
σ2z2

dz

where k = log(S0/K ) + rT . Each term gives the corresponding
term in BS formula based on the calculus of residuales (the detalis
can be found in Lewis (2000)).



FFT in Lewis Formula

We compute, denoting k = log S0 + rT and X r
t = Xt − rt, the

values of

V (S0,T , k) =
e−rT

2π

∫ iν+∞

iν−∞
e−ikzEQ(e−izX r

T )f̂ (z)dz ,

that are of the form

V (k) =

∫ iν+∞

iν−∞
e−ikzg(z)dz

FFT gives the Fourier transform of a discrete sequence, and by this
reason we make the following approximations:



∫ iν+∞

iν−∞
e−ikzg(z)dz ≈

∫ iν+A/2

iν−A/2
e−ikzg(z)dz

≈ A

N

N−1∑
j=0

wjg(zj)e−ikzj

where

I zj = −A/2 + j∆ (j = 0, . . . ,N − 1)

I ∆ = A/(N − 1)

I wj are the weights corresponding to an integration rule, for
instance in the classical parallelogram rule, the weights are

w0 = wN−1 = 1/2, wj = 1 (j = 1, . . . ,N − 2).

Now, putting k = kn = 2πn/(N∆) = log S0,n + rT (a vector of
initial stock prices), the sum is transformed in order to apply the
FFT:



A

N

N−1∑
j=0

wjg(zj)e−i(2πn/(N∆))(−A/2+j∆)

=
A

N
e iAun/2

N−1∑
j=0

wjg(zj)e−i(2πjn/N)

In conclussion, the FFT allows us to compute efficiently a vector of
prices for a vector of initial prices of the form

S0,n = exp

(
2πn

N∆
− rT

)
Other parametrizations, allow to compute prices for a vector of
strikes.



American options

An american options is a contract that pays a payoff f (Sτ ) at time
τ ∈ [0,T ] that can be choosen by the holder of the option.

When the option has no expiration time, i.e. (T =∞) it is named
a perpetual option.

The price of an american option with finite maturity (T <∞) is
obtained solving an optimal stopping problem, that usualy does
not admit closed form solution, and is carried out with the help of
numerical methods.



In the perpetucal case, there exists some closed formuals. (Mc
Kean (1965), Merton (1973) for BS model)
We now present some results for LP processes.
Let us choose Q such that the process X :generalize this two result.

I is a Lévy process under Q,

I
(

St/Bt

)
t≥0

is a martingale under Q

In order to price the perpetual put option the following optimal
stopping problem must be solved:

P(S0) = sup
τ∈M

EQ

(
e−rτ (K − Sτ )+

)
,

and similarly for the call C (S0). The result is the following



Theorem.(M. 2002) St = S0eXt , X is a LP. Set

I = inf{Xt : 0 ≤ er}, M = sup{Xt : 0 ≤ er}.

where er is exp(r) independent of X . The price of the perpetual
put option and call option with dividens for the stock model is
given by

P(S0) =
E (K − S0e I )+

E (e I )
, C (S0) =

E (S0eM − K )+

E (eM)

and the optimal excercise time is given by

τ∗P = inf{t ≥ 0: St ≤ S0E (e I )},
τ∗C = inf{t ≥ 0: St ≥ S0E (eM)}.

New problem: Compute the distribution of I and M.
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